On a problem of Schinzel concerning principal divisors in arithmetic progressions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

Arithmetic Progressions on Conics.

In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose x-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We als...

متن کامل

On primes in arithmetic progressions

Let d > 4 and c ∈ (−d, d) be relatively prime integers, and let r(d) be the product of all distinct prime divisors of d. We show that for any sufficiently large integer n (in particular n > 24310 suffices for 4 6 d 6 36) the least positive integer m with 2r(d)k(dk− c) (k = 1, . . . , n) pairwise distinct modulo m is just the first prime p ≡ c (mod d) with p > (2dn − c)/(d − 1). We also conjectu...

متن کامل

The Frobenius Problem for Modified Arithmetic Progressions

For a set of positive and relatively prime integers A, let Γ(A) denote the set of integers obtained by taking all nonnegative integer linear combinations of integers in A. Then there are finitely many positive integers that do not belong to Γ(A). For the modified arithmetic progression A = {a, ha + d, ha + 2d, . . . , ha + kd}, gcd(a, d) = 1, we determine the largest integer g(A) that does not ...

متن کامل

Concerning Some Arithmetic Functions Which Use Exponential Divisors

Let σ(e)(n) denote the sum of the exponential divisors of n, τ (e)(n) denote the number of the exponential divisors of n, σ(e)∗(n) denote the sum of the e-unitary divisors of n and τ (e)∗(n) denote the number of the e-unitary divisors of n. The aim of this paper is to present several inequalities about the arithmetic functions which use exponential divisors. Among these inequalities, we have th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1971

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-19-3-215-222